Showing posts with label differential pressure. Show all posts
Showing posts with label differential pressure. Show all posts

The Role of the High and Low Pressure Ports on a Differential Pressure Transmitter


It's easy to misunderstand the role of the high and low pressure port on differential pressure transmitters. This video clearly explains their real meaning and role.

http://www.teco-inc.com
800-528-8997

Differential Pressure Flow Metering for the Chemical Processing Industry White Paper

Differential Pressure Flow MeteringFlow measurement is a critical aspect of plant operation in the Chemical Processing Industry (CPI). Users choosing equipment to meter the flow of liquid or gas processes must consider a wide range of factors to arrive at an optimal solution Experience has shown there are significant differences between meter technologies, with each type of device having its own advantages and disadvantages for processing facilities

Common Differential Flow Metering Methods:
  • Venturi
  • Cone Meter
  • Wedge Meter
  • Averaging Pitot Tube
In modern chemical plants, personnel need to make faster and better decisions by capturing, managing and analyzing the right data at the right time These facilities rely heavily on flow processes, and thus accurate and reliable measurement techniques are vital to the efficiency and safety of their operations.

Badger Meter, a premier manufacturer of industrial flow meters, has authored an excellent white paper explaining the use of differential pressure flow metering in the chemical processing industry. You can get the white paper at this link.

For more information, visit Thompson Equipment Company (TECO) at https://teco-inc.com or call 800-528-8997 for immediate service.

Choosing the Right Industrial Flow Meter

Which Industrial Flow Meter
Which Industrial Flow Meter to Choose?
Choosing the right flow measurement solution can have a major impact on operational and business performance. For this reason, companies anticipating a flow meter purchase should consult with a knowledgeable instrumentation supplier, such as Thompson Equipment Company (teco-inc.com), in the early stages of a project. The effort spent learning about basic flow measurement techniques, and available meter options, will ensure a successful application once the equipment is installed.

This white paper, courtesy of Badger Meter, does a great job outlining all the various types of flow meter technologies, including:
  • Coriolis
  • Differential Pressure
  • Electromagnetic
  • Positive Displacement
  • Thermal Mass
  • Turbine
  • Impeller
  • Variable Area
  • Ultrasonic
  • Vortex
  • Oval Gear
  • Nutating Disc
Download your own PDF copy of "Choosing the Right Flow Meter here, or view the embedded document below.

https://teco-inc.com
800-528-8997 for Immediate Service

Water Flow Metering and Measurement

water flow measurement devices
Water flow measurement device comparison (click for larger view)
Water is commonly measured and sold in volumetric measurements, which allows for lower-cost metering options. The specific measurement technology chosen will depend on a number of factors including, but not limited to, current design, budget, accuracy requirements, resolution, minimum flow rate, potable versus non-potable (or at least filtered versus non-filtered water), range of flow rates, and maximum flow rate.

Volumetric water measurement can be broken down into three general operating designs:
  • Positive displacement
  • Differential pressure
  • Velocity

Positive Displacement – Nutating-Disk Flow Meter

Nutating-disk flow meters are the most common meter technology used by water utilities to measure potable-water consumption for service connections up to 3-inch. The nutating-disk flow meter consists of a disk mounted on a spherically shaped head and housed in a measuring chamber. As the fluid flows through the meter passing on either side of the disk, it imparts a rocking or nutating motion to the disk. This motion is then transferred to a shaft mounted perpendicular to the disk. It is this shaft that traces out a circular motion – transferring this action to a register that records flow.

There are a variety of differential pressure devices useful for water metering; two of the more common devices include orifice flow meters and venturi flow meters.

Differential Pressure – Orifice Flow Meter

The orifice element is typically a thin, circular metal disk held between two flanges in the fluid stream. The center of the disk is formed with a specific-size and shape hole, depending on the expected fluid flow parameters (e.g., pressure and flow range). As the fluid flows through the orifice, the restriction creates a pressure differential upstream and downstream of the orifice proportional to the fluid flow rate. This differential pressure is measured and a flow rate calculated based on the differential pressure and fluid properties.

Differential Pressure – Venturi Flow Meter

The venturi flow meter takes advantage of the velocity-pressure relationship when a section of pipe gently converges to a small-diameter area (called a throat) before diverging back to the full pipe diameter. The benefit of the venturi flow meter over the orifice flow meter lies in the reduced pressure loss experienced by the fluid.

The velocity measurement technologies described in this section include the turbine flow meter, vortex-shedding flow meter, and ultrasonic flow meters.

Velocity – Turbine Flow Meter

A multi-blade impellor-like device is located in, and horizontal to, the fluid stream in a turbine flow meter. As the fluid passes through the turbine blades, the impellor rotates at a speed related to the fluid’s velocity. Blade speed can be sensed by a number of techniques including magnetic pick-up, mechanical gears, and photocell. The pulses generated as a result of blade rotation are directly proportional to fluid velocity, and hence flow rate.

Velocity – Vortex-Shedding Flow Meter

A vortex-shedding flow meter senses flow disturbances around a stationary body (called a bluff body) positioned in the middle of the fluid stream. As fluid flows around the bluff body, eddies or vortices are created downstream; the frequencies of these vortices are directly proportional to the fluid velocity.

Velocity – Ultrasonic Flow Meters

There are two different types of ultrasonic flow meters, transit-time and Doppler-effect. The two technologies use ultrasonic signals very differently to determine fluid flow and are best applied to different fluid applications. Transit-time ultrasonic flow meters require the use of two signal transducers. Each transducer includes both a transmitter and a receiver function. As fluid moves through the system, the first transducer sends a signal and the second receives it. The process is then reversed. Upstream and downstream time measurements are compared. With flow, sound will travel faster in the direction of flow and slower against the flow. Transit-time flow meters are designed for use with clean fluids, such as water.

Doppler-effect ultrasonic flow meters use a single transducer. The transducer has both a transmitter and receiver. The high-frequency signal is sent into the fluid. Doppler-effect flow meters use the principal that sound waves will be returned to a transmitter at an altered frequency if reflectors in the liquid are in motion. This frequency shift is in direct proportion to the velocity of the liquid. The echoed sound is precisely measured by the instrument to calculate the fluid flow rate.

Because the ultrasonic signal must pass through the fluid to a receiving transducer, the fluid must not contain a significant concentration of bubbles or solids. Otherwise the high frequency sound will be attenuated and too weak to traverse the distance to the receiver. Doppler-effect ultrasonic flow meters require that the liquid contain impurities, such as gas bubbles or solids, for the Doppler-effect measurement to work. One of the most attractive aspects of ultrasonic flow meters is they are non-intrusive to the fluid flow. An ultrasonic flow meter can be externally mounted to the pipe and can be used for both temporary and permanent metering.

For more information on any flow application, visit http://www.teco-inc.com or call (504) 833-6381.


Measuring Flow Using Differential Pressure

Bernoulli's principle
There are several types of flow instruments that rely on the Bernoulli's principle (an increase in the speed of a fluid occurs simultaneously with a decrease in pressure), that measure the differential pressure across the high pressure side and low pressure side of a constriction.

Many industrial processes adapt this principle and measure the differential pressure across an orifice plate or a Venturi tube to measure and control flow.

An orifice plate is a plate with a hole through it. When placed in the pipe, it constricts the flow and provides a pressure differential across the constriction which can be correlated to the flow rate.

A Venturi tube constricts the flow in the same fashion, but instead a plate with a hole, it uses a pipe or tube with a reduced inner diameter to create the flow differential.

This video provides an excellent basic understanding of how this is accomplished. For more information on any type of industrial flow measuring device, visit the TECO website o call 800-528-8997.